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Abstract-The buckling problem of thick. cross-ply laminated cylinders and cylindrical panels
under combined external loading is investigated on the basis of fully three-dimensional elasticity
considerations. The three-dimensional pre-buckling state that is initially employed, assumes zero
shear stresses and is suitable for the analysis of both open panels and closed cylinders. This
assumption leads to a set of three-dimensional linearized buckling equations. Both sets of three­
dimensional prebuckling and buckling equations are then solved on the basis of a recursive method.
The analysis is suitable for studying the buckling behavior of simply supported cross-ply cylinders,
subjected to the single or the combined action of an axial compression and a uniform lateral
pressure, or open cross-ply cylindrical panels under axial compression. The numerical results
presented and discussed throughout this paper deal with cylinders and cylindrical panels having a
symmetric or an antisymmetric cross-ply lay-up.

INTRODUCTION

The history of theoretical buckling analyses of cylindrical shells subjected to either axial
compression or lateral pressure is well documented in the literature, by means of several
books, monographs and review papers (e.g. Simitses, 1986). Based almost exclusively on
classical shell theory investigations, it started in the beginning of this century with the
primary interest being focused on failure of shells made of steel, a material that is considered
as macroscopically isotropic. Today, the main interest of such investigations is related to
composite materials applications.

Although it is well known that composite thin-walled structures are considerably
more sensitive in transverse deformation effects than corresponding structures made from
isotropic materials, buckling analyses of composite cylindrical shells are still based on two­
dimensional shell theories. These, however, are mainly refined, higher-order shell theories
that take transverse shear deformation effects into consideration (e.g. Palazoto and Linne­
mann, 1991; Simitses and Anastasiadis, 1991,1992; Soldatos, I992a,b,c). To the authors'
best knowledge, the only analytical three-dimensional buckling studies existing in the
cylindrical shell literature are due to Babich and Kilin (1985) and Kardomateas (l993a,b).
On the basis of axisymmetric but still three-dimensional pre-buckling state considerations,
Babich and Kilin (1985) dealt with the buckling of a three-layered orthotropic cylinder
under axial compression, while Kardomateas (l993a) studied the plane strain buckling of
an infinite hollow orthotropic cylinder subjected to a uniform lateral pressure. Since the
linearized buckling equations obtained were differential equations with variable coefficients,
their solution was sought, in both papers (Babich and Kilin, 1985; Kardomateas, 1993a),
on the basis of numerical methods.

Dealing with buckling of transversely isotropic, complete, simply supported cylindrical
shells under axial compression, Kardomateas (I 993b) obtained an exact solution of three­
dimensional buckling equations in terms of Bessel functions. This was achieved on the basis
of an essentially membrane pre-buckling state, in which a constant axial normal stress is
the only non-zero initial stress component. In this connection. Noor and Peters' (1989)
computational procedure is worth mentioning, since it also employs a membrane pre­
buckling state. Using a two-field mixed finite element method for the discretization in the

SAS 32: 13-J 1949



1950 J. Q. Ye and K. P. Soldatos

thickness direction, this (Noor and Peters, 1989) was applied for three-dimensional buckling
analysis of complete, simply supported, cross-ply laminated cylinders under axial
compression.

On the basis of fully three-dimensional elasticity considerations, this paper studies
the buckling behaviour of simply supported: (1) hollow laminated cylinders subjected to
combined axial compression and uniform lateral pressure, and (2) open laminated cyl­
indrical panels under axial compression. To the authors' best knowledge, the three-dimen­
sional pre-buckling analysis employed for either open or closed laminated cylinders has not
been considered in the literature. In more detail, all initial shear stresses are assumed to be
zero, while all three initial normal stresses have a non-zero contribution both to the pre­
buckling state and to the buckling analysis. In contrast with corresponding two-dimensional
analyses, these non-zero initial stresses are all varying through the thickness of the cyl­
indrical shell or panel considered and may arise due to the single or the combined action
of an axial compression or a lateral pressure. As a result, the buckling problem considered
is not related to the corresponding free vibration problem in the close connection observed
when a two-dimensional theory, that assumes a membrane prebuckling state, is employed.

Both three-dimensional sets of prebuckling and linearized buckling equations obtained
are solved on the basis of a recursive formulation of a successive approximation approach.
For the buckling analysis, this formulation is equivalent to the one employed recently in
connection with exact three-dimensional dynamic analyses of homogeneous and laminated
composite cylinders and panels (Soldatos and Hadjigeorgiou, 1990; Soldatos, 1991;
Soldatos and Hawkes, 1991; Hawkes and Soldatos, 1992). Compared, however, to the
previous analyses, this new formulation considerably facilitates the numerical calcula­
tions in the sense that it always yields buckling loads as roots of a 6 x 6 eigen-dctcrminant.
For the pre-buckling analysis, this new formulation always ends up with a set of two
simultaneous linear algebraic equations whose solution provides with the pre-buckling
stress distributions regardless of the number of the material layers of the shell considered.

Dealing with buckling problems that involve cross-ply laminated configurations, a
difficulty involved in mathematical modelling is more evident than it is in the corresponding
homogeneous case (Soldatos and Ye, 1994). It arises from the fact that. upon applying, for
instance, a uniform axial compression acting directly on the curved edges, different layers
that possess different material properties undergo different axial contractions. Following,
however, the Babich and Kilin (1985) pre-buckling analysis, this difficulty is overcome here
by assuming that the axial compression is applied on the curved edges by means of a rigid
plane that remains always normal to the axis of the cylinder and causes, therefore, the same
initial axial normal strain in all layers. Under these considerations, the proposed analysis
is suitable for studying the buckling behaviour of cross-ply, simply supported, hollow
cylinders subjected to combined axial compression and uniform lateral pressure and cross­
ply cylindrical panels under axial compression. After successful numerical comparisons
with corresponding finite element results tabulated in Noor and Peters (1989), further
results are presented and discussed for cases that have not as yet been considered in the
literature on the basis of fully three-dimensional considerations.

PROBLEM SPECIFICATION

Figure 1 shows the nomenclature of a circular cylindrical panel with constant thickness
h and axial length L r The radius and the circumferential length of its middle-surface are
denoted by Rand L" respectively, so ¢ = LsiR represents its shallowness angle; upon
choosing ¢ = 0 or ¢ = 2n, the geometrical configuration of a flat plate or a complete
circular cylinder are respectively obtained as particular cases. The axial, circumferential
and normal to the middle-surface co-ordinate length parameters are denoted with x, sand
z, respectively, while u, v and tv represent the corresponding displacement components. It is
assumed that the cylindrical panel considered is made of an arbitrary number of orthotropic
linearly elastic layers whose material axes of orthotropy coincide with the axes of the
adopted curvilinear co-ordinate system. It is finally assumed that, dependent on the chosen
geometrical configuration and the boundary conditions imposed on the curved, as well as
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Fig. 1. Nomenclature of a circular cylindrical panel.
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on the straight edges (in the case of an open panel or a flat plate), the structural element
considered buckles under the single action or, where applicable, a combination of: (1) an
averaged axial compression, Po acting at the edges x = 0, L,; (2) an averaged cir­
cumferential compression, PI' acting at the edges s = 0, L s (if there are any); and (3) a
suitable combination of uniform normal pressures, p+ and p-, acting on the outer (z = h/2)
and inner (z = - h/2) lateral surfaces, respectively.

PRE-BUCKLING STATE IN A THIN ORTHOTROPIC LAYER

As it has been described in (Soldatos and Ye, 1994), with an initial displacement model
of the form,

u = Aox, v = Bos, Hi = wo(z), (1)

where Au and Bo are arbitrary constants, the pre-buckling state in a single orthotropic layer
is assumed free of initial shear stresses. In more detail, with this displacement model two
of the Navier equations of linear elasticity in cylindrical polar co-ordinates are satisfied
identically. The third of these equations yields:

where a prime denotes ordinary differentiation with respect to z and Ci/ (i, j = 1,2, ... , 6)
are material elastic constants (Jones, 1975).

The exact solution of eqn (2) has been obtained in Soldatos and Ye (1994), where the
buckling problem of corresponding homogeneous orthotropic cylinders and cylindrical
panels has been investigated. That exact solution can apparently be used directly in the
present paper, in connection with orthotropic layers of any thickness. Dealing, however,
with cross-ply laminates, it is more convenient to employ here an alternative, successive
approximation approach for the exact solution of eqn (2), subject to certain boundary
conditions that are introduced later [see eqns (9) and (10) below]. This approach has also
been employed in connection with exact three-dimensional dynamic analyses of homo­
geneous and laminated composite cylinders and cylindrical panels (Soldatos and Had­
jigeorgiou, 1990; Soldatos, 1991 ; Soldatos and Hawkes, 1991 ; Hawkes and Soldatos, 1992;
Ye and Soldatos, 1994) and. in the next two sections, it is further employed for the solution
of the associated linearized buckling equations. In the present pre-buckling stage, it yields
an alternative exact solution of eqn (2) in the sense described in Soldatos (1991) where,
dealing with torsional vibrations of orthotropic cylinders, it provided an alternative exact
solution of a Bessel's equation.
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To this end, it is assumed that the cylinder or panel considered is quite thin (i.e.,
z/R« 1) so that a replacement of the term (1 +z/R) by 1 is reasonable in eqn (2). This leads
to the following approximate differential equation:

which has constant coefficients. This can equivalently be brought into the form of the
following matrix differential equation,

{fr = [g]{f}+{X}, [f} = [wo,(J?]l,

where, the appearing initial radial stress is defined as,

(4)

(5)

and the constant elements of the 2 x 2 matrix [g] and the column vector {X} are given in the
Appendix. The general solution of eqn (4) can be written in the following form,

(f(z)} = [b(z)]{f( -h/2)} + {tit}, (-h/2 ~ z ~ h/2)

{tit} = r'~.2 [b(z-r)]{x} dr, (6)

where the transfer matrix [b(z)] = exp [(z + h/2)g] can be evaluated analytically in various
ways (Derusso et al., 1965).

This pre-buckling displacement and radial stress field yield zero initial shear stresses
as well as the following initial in-plane normal stresses,

(k = 1,2) (7)

where, the indices 1 and 2 in the left-hand side represent x and s, respectively. The unknown
arbitrary constants A o and Bo as well as the final form of the solution of eqn (4) are
determined by appropriately using the stress boundary conditions imposed at the edges as
well as on the two lateral surfaces of the cylinder or the cylindrical panel considered. It
should be noticed again, that this will be only an approximate three-dimensional solution
of the pre-buckling state considered which is satisfactorily accurate for thin layers only.
As has already been mentioned, however, upon applying the successive approximation
procedure described in the next sections, it eventually leads to an exact solution of eqn (2)
[see eqn (19)], subject to the boundary conditions employed below. In this sense, it is
equivalent to the alternative, closed form solution of eqn (2) obtained in (Soldatos and Ye,
1994).

The buckling analyses of the simply supported cylinders and cylindrical panels con­
sidered in this paper are based on two particular cases of the pre-buckling state described.
Relevant buckling problems, associated with either of these cases, have not yet been
considered in the literature on the basis of fully three-dimensional considerations.

(i) Complete cylinders under combined axial compression and external pressure
In this case, a further assumption of axisymmetric pre-buckling deformation yields

Bo = O. Upon further assuming that the applied external loadings are interrelated by means
of the following relation,
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P, = kp,
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(8)

with k being a known positive constant, the boundary conditions are conveniently expressed
as follows,

I f":1
-} .... a;l(z)dz= -kp, aO(h/2) = -p, a~(-h/2)=0.
1 /12

(9)

Employing k = 0 or k = CD in eqn (8), eqns (9) yield boundary conditions for the pre­
buckling state of a complete cylinder under a uniform external pressure or an axial
compression, respectively. Although for k * Xi the accuracy of the results is expected to
be decreasing with decreasing length of the cylinder, the effects of this restriction are also
expected to decrease by decreasing the value of k.

(ii) Open cylindrical panels under axial compression
In this case, the boundary conditions employed are as follows:

I fllC 1,,·2I . a~(z)dz = -P" . a?(z)dz = 0, a~(±h/2) = O.
1 __ 11,2 11'2

(10)

As a particular case, three-dimensional buckling of a flat plate under axial compression can
be considered by setting (p = O. However, this particular case has been studied already by
Srinivas and Rao (1970) and Fan and Ye (1993).

PERTURBED STATE IN A THIN ORTHOTROPIC LAYER

Three-dimensional elasticity buckling differential equations in cylindrical polar co­
ordinates are obtained by extending the variational approach described in Cartesian co­
ordinates by Washizu (1975). Hence, for small displacements compared to unity and in cases
where the pre-buckling state is determined by the geometrically linear analysis described in
the preceding section, the elastic stability of a homogeneous orthotropic cylinder or cyl­
indrical panel is described by the following linearized set of three-dimensional Navier-type
equations:

C II U,,+C66 (1+z/R) 1U ,,+C55 R 1(I+z/R)l u ,+C55 U."

+(C I1 + C66 )(1 +Z/R)-IZ;." + (C 13 + C 55 )W c +(C I2 + C 55 )R- 1(1 +Z/R)-I w,X

= a~u.xx + a? (1 + z/Rt 2 Us, + (1 + z/R) I [a~(1 + z/R)u,L

(C 12 + C 66 )(1 +z/R) -I u" + C6V" + Cn (1 +z/R)-1 V.,s

- C 44 R- 2 (1 + z/R)-1 V + C 44 R -I (1 + z/R)- 1V,

+C44V,,+(C22+C44)R-I(1+z/R) Iws

+(C13 + C44 )(1 +z/R) liVe = a~u 'x + a? (1 + z/R)-2[V" - R -2 v +2R -1 wsl

+(1 +z/R)-I[a~(1+Z/R)l',L

(C 13 + C 55 )U. c +(C I3 - CdR I u, - (C12 + C 44 )R -I (1 +Z/R)-3V,s

+(C23 + C44 )(1 +Z/R)-I i'.e + C 55 1V" + C44 (1 +Z/R)-2 wss

+C"w,,-C22 R- 2(1 +z/Rf 211'+C31 R 1(1 +z/R) Iw"
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where the appearing initial stresses are given by eqns (5) and (7). Associated to these
equations, the following requirements are imposed on z = ±h/2 to satisfy the boundary
conditions for stress-free lateral surfaces at the perturbed buckling state,

w.x+u. z = 0,

(12)

Due to the appearance of the terms (1 + z/R) as well as the initial stresses 6~, lJ? and
6~ which are functions of z, eqns (11) are differential equations with variable coefficients.
On the basis of the reasoning used in pre-buckling analysis, a replacement of (1 +z/R) with
I is acceptable for quite thin cylinders (h/R« 1). Similarly, a replacement of the terms
6~(Z), 6?(Z) and 6~(Z) with 6~(R), lJ?(R) and 6~(R) is also reasonable. Under these con­
siderations and with the introduction of the displacement model,

u = U (z) cos (mnx/L,) sin (nns/L,) ,

z; = V(z) sin (mnx/L.,.) cos (nns/L,),

Hi = W(z)sin(mnx/LJsin(nns/L,), (13)

that satisfies exactly simply supported edge boundary conditions, the above differential
eigenvalue problem can be approximated as follows,

{F}' = [G]{F} , {F]T = {U, U', V, V', W, W}. (14)

In eqn (13), n represents the circumferential full or half-wave number (in the case of a
complete cylinder or an open panel, respectively), while m is the axial half-wave number of
the buckling pattern. The components of the 6 x 6 matrix [G] appearing in eqn (14) are
given in the Appendix and are in general dependent on the initial stress approximations
6e(R), 6?(R) and 6~(R). The general solution of eqn (14) can be explicitly expressed as,

{F(z)} = [B(z)]{F( - h/2)} , (- h/2 ~ z ~ h/2), (15)

where {F( - h/2)} denotes the value of the vector {F} at the bottom surface of the cylinder
(z = -h/2). Moreover, as has already been mentioned with the matrix [b(z)], for a given
value of z (representing a z-surface that is parallel to the middle surface), the elements of
the matrix [B(z)] = exp[(z+h/2)G] can be evaluated analytically (Derusso et al., 1965).

On the other hand, inserting eqns (13) into the lateral boundary conditions [eqn (12)]
and using the notation adopted in eqn (14) yields the following boundary conditions at
z = ±h/2,

(mn/LJC I3 F J+C23 (1 +z/R)-I(nnF3/L,-R-JFs)-C33176 = 0,

172+ (mn/LJ17s = 0,

174 (I+z/R) I(R- JF J -nnFs/L,) =0. (16)

These boundary conditions in connection with eqn (15) lead to an algebraic eigenvalue
problem that yields an approximate solution of the buckling problem considered. However,
such an approximate solution is expected to approach the exact three-dimensional solution
of the problem as the thickness of the layer decreases.
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SOLCTION FOR THICK OR LAMINATED CYLINDERS OR PANELS

In this respect. the solution of the governing equations [eqns (3) and (11)] is based on
the division of the hollow cylinder or open panel considered into N coaxial and successive
fictitious subcylinders. Different layers may have different thicknesses or material properties.
However, it is assumed that the thickness of each layer approaches zero as N approaches
infinity. Assuming, in addition, that each sublayer is homogeneous and made of either
isotropic or orthotropic material, two types of material interfaces are distinguished in
such a cross-ply laminate: the fictitious interfaces that separate layers with same material
properties and the real ones that separate layers of different materials. For each of these
subcylinders the approximate solutions in eqns (4) and (15) are initially formed. Upon
choosing a suitably large value of N, each individual layer becomes thin and, as a result,
an approximate solution of the form described in the two preceding sections is considered
adequate for the study of its stability behaviour. Then, all solutions obtained are suitably
connected by means of appropriate continuity conditions imposed on the fictitious and real
interfaces, thus providing an arbitrary close solution of the exact governing differential
equations given in eqns (3) and (II).

Dealing in particular with the interface of the jth and (j+ I)th of the aforementioned
fictitious layers, having thicknesses HI) and H)~ I), respectively, the following continuity
conditions are considered (j = 1,2, ... , N - I),

and,

u (- hlJ + I) /2) = U (h(i) /2), V ( - Hi+ I) /2) = V (hU)12),

W( ~/zU~1)/2) = W(Nil/2) , (Jo( -Hi+ 1)/2) = (J,(hU)/2),

T\e( -HJ+ 1)/2) = T c (hl/)/2), Tso ( -hu+ 1)/2) = T,z(f{il/2),

(17a)

(17b)

for the pre-buckling and the buckling state, respectively. Equations (17b) are equivalent to
the following continuity conditions,

(18)

where the elements of the constant matrix [T] are given in the Appendix. Hence, upon
recursively using eqns (6), (15), (l7a) and (18), the solution for the pre-buckling and the
buckling state in such an N-layered composite laminate can respectively be obtained in the
following form,

where,
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[A] = lf~}[b(')])l [n] = JJ)),}[b1kl])}l/!Ii-.I)}+{l/!INI},

[H] = lkD" ([Blkl][T1kJ])J' (21)

Equation (19), in connection with eqn (6) and the boundary conditions in eqn (9) or
(10), yields a 2 x 2 system of linear algebraic equations from which the pre-buckling stress
state is determined. Upon inserting next the obtained results into the elements of the matrix
[G], eqn (20), in connection with the boundary conditions in eqn (16), yields an eigenvalue
problem whose solution agrees with critical buckling load predictions. It is worth men­
tioning that, with the present formulation, the successive approximation method employed
elsewhere (Soldatos and Hadjigeorgiou, 1990; Soldatos, 1991 ; Soldatos and Hawkes, 1991 ;
Hawkes and Soldatos, 1992) has been converted into a recursive approach in which,
independently of the number of real and/or fictitious layers involved, the eigenvalues of a
6 x 6 matrix are always sought.

\IUMERICAL RESULTS AND DISCUSSION

Most of the numerical examples shown throughout this study are for laminated
cylinders and cylindrical panels whose material properties are,

GLTiET = 0.6, GTT/ET = 0.5, VLT = VTT = 0.25, (22)

and the stiffness ratio ELiET is variable. In a particular case, however, for the purpose of
comparison with a previous relevant study (see Table 2), different material properties have
been used.

The manner in which the present successive approximation method converges is shown
in Table I, for a two-layered, relatively thick (hi R = 0.2) hollow cylinder having an anti­
symmetric [0/90] lay-up. The cylinder is subjected to: (i) a pure external lateral pressure
(k = 0); (ii) the combined action of an external pressure and an axial compression
(k = 100); and (iii) a pure axial compression (k = w). Table I illustrates the influence of
the number of fictitious layers, N, on the prediction of the buckling parameters,

p*=piET (k=l-w),

P*=P,/ET (k=w), (23)

for a stiffness ratio ELI ET = 40. Apparently, a very fast convergence is observed in all three
cases considered. Results accurate up to four significant figures are obtained for a relatively
thin sub-layer's choice (hui/R ~ 0.02). Moreover, for such relatively thick cylinders, an
acceptable accuracy of buckling load predictions is achieved even without the use of
successive approximations (N = 2). In this respect, it should be mentioned that similarly
fast convergence rates have always been observed in cases that the proposed method was

Table I. Buckling parameters p* or p* of a two-layered [0,/90"] hollow
cylinder under different loadings (EL !E L = 40. L,IR = 5, hi R = 0.2)

IV k=O k = 100 k = CfJ
-- ------------ ------

12329 x 10 2.7945 x 10- 1 3.6117xlO- '
4 1.1947 x 10 2.7600 x 10 ' 3.5872 X 10- 1

6 1.1875x1O 2.7532xlO 1 3.5821 x 10 1

8 1.1849 x 10 2.7508 X 10-' 3.5804 X 10- 1

10 1.1837xlO 2.7496 x 10 3.5795 x 10- 1

12 1.1831xlO 2.7490 x 10 1 3.5790 x 10 1
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Table 2. Buckling parameter (P,R'jEyh') of a 40-layered orthotropic cyitndcrs undn
axial compression (L,jl? = 5. h: R = 0.2. k = Y.)

In n Noor Present HI II 'Joor Present
----~

--~-_.__._._---

I 0 12.50 12.520 2 2 5.466 5.4(,7
I I 5.511 5.520 2 3 1654 16.674
I 2 11.08 11.104 0 12.50 12.572
1 3 57.70 57.584 I 6.x.1~ 6.~49

2 0 12.50 12.564 2 5052 50S I
2 I 6.380 6.391 9.622 9.613

1957

applied in connection with corresponding free vibration problems (Soldatos and Had­
jigeorgiou, 1990; Soldatos, 1991 ; Soldatos and Hawkes, 1991 ; Hawkes and Soldatos. 1992:
Ye and Soldatos, 1994).

For the purpose of comparison with corresponding results based on an alternative
three-dimensional investigation (Noor and Peters, 1(89). the buckling problem of a rela­
tively thick (Lx! R = 5, hi R = 0.2), simply supported. 40-layered complete cylinder under
axial compression is considered. The following material properties arc used in the Noor
and Peters (1989) finite element analysis,

ELIET = 15, GLTIET = 0.6, Gn!Er = 0.35. I'll = 111 = 0.3. (24)

for a cylinder having an antisymmetrie [0!90 1=0 cross-ply lay-up. lor such a cylinder,
Table 2 compares the dimensionless axial buckling loads U\RCETh') tabulated in Noor
and Peters (1989) with corresponding results based on the present approach. Due to the
small thickness to middle surface ratio in each layer Up! R = 0.(05). furthcr consideration
of fictitious sub-layers was unnecessary. It is observed that both groups of results compared
are in very close agreement. In particular, both methods provided rractically identical
critical buckling load predictions (m = 3, n = 2). Using. however. a very large number of
degrees of freedom and therefore matrices of large dimension. the finite clement analysis
employed by Noor and Peters (1989) should be computationally considerably more expens­
ive as it compares with the present approach that requires algebraic manipulations involving
6 x 6 matrices only.

After the aforementioned successful comparisons made. all resulh shown next arc for
cases that have not as yet been considered in the literature on the hasis of fully three­
dimensional considerations. Figures 2-5 deal with hollow laminated cylinders having a
symmetric or an antisymmetric cross-ply lay-up and being subjected either to a simple
lateral pressure (k = 0) or to the combined action of a lateral pressure and an axial
compression (k = 100). In all cases, the variation of the critical pressure load parameter p*
is shown as a function of the stiffness ratio ELIET as well as the number of layers involved.

p*

Fig. 2. Critical pressure loading parameter, p*. as a function of the stilTne'ss of ,\ comrletc cylinder
under lateral pressure (k = O. h!R = 0.2. L,·R = S. symmctric lay-up).
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0.020

0.015

p*

0.010

(1,2)
0.005

Fig. 3. Critical pressure loading parameter.!,*, as a function of the stiffness of a complete cylinder
under lateral pressure (k ~ 0, hiR ~ 0.2, L,! R = 5, antisymmetric lay-up).

[(OO/900 hls

30E-4

25E-4

20E-4

po.
lSE-4

IOE-4

SE-4

Fig. 4. Critical pressure loading parameter, p', as a function of the stiffness of a complete cylinder
under combined lateral pressure and axial compression (k = \00, h/R = 0.2, LJR = 5, symmetric

lay-up).

30E-4

25E-4

20E-4

p* ISE-4

(2,2
IOE-4

SE-4

Fig. 5. Critical pressure loading parameter, p', as a function of the stiffness of a complete cylinder
under combined lateral pressure and axial compression (k = 100, h/ R = 0.2, LxiR = 5, anti­

symmetric lay-up).
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0.30

0.25

0.20

p*
0.15

(1,2)
0.10

0.05

ErJEr

Fig. 6. Critical buckling load parameter, P*, as a function of the stiffness of a complete cylinder
under axial compression (k = ex;, hjR = 0.2, LjR = 5, symmetric lay-up).

1959

Corresponding results dealing with the variation of the critical axial load parameter p*
(k = XJ) are shown in Figs 6 and 7 for cylinders subjected to a simple axial compression.
The axial and circumferential wave numbers of corresponding buckling patterns are shown
in these figures as (m, n). As was expected, critical buckling loads are in all cases increasing
with either increasing stiffness ratio or number of layers. This observation agrees and
further validates a similar trend of numerical results based on corresponding two-dimen­
sional studies (e.g. Jones, 1975; Whitney, 1987; Soldatos, I992b). Dealing, in particular,
with antisymmetric cross-ply lay-ups (Figs 3, 5 and 7), it represents a well-known result
according to which the bending-extensional coupling due to lamination dies out with
increasing the number of layers.

It is further observed that: (i) cylinders under pure external lateral pressure (Figs 2
and 3) buckle always in a pattern having one axial and two circumferential half waves; (ii)
upon increasing the axial compression (i.e. the value of k), the number of layers or the
stiffness ratio, the axial half-wave number of the buckling pattern increases; (iii) upon
increasing the axial compression (or, respectively, the external lateral pressure), the critical
external pressure (or, respectively, the critical axial compression) decreases; and (iv)
although for homogeneous cylinders reinforced in the axial direction (Figs 2, 4 and 6: rOC]
stacking sequence), buckling occurs with one axial half-wave and one circumferential full­
wave (two half-waves), upon employing circumferentially reinforced layers ([0°/90°]5 and
([oo/90 U h}s stacking sequences), corresponding cylinders buckle in a pattern having more
than one axial half-wave.
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Fig. 7. Critical buckling load parameter, P*, as a function of the stiffness of a complete cylinder
under axial compression (k = 00. hjR = 0.2. LjR = 5. antisymmetric lay-up).
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panel lInd"1 c1~"'; Cllll1prc"ioJl (k ~. Y. /1' R = 0.2. LJR = 2, c/J = rr./3, symmetric lay-up).

In a similar manner, Figs 8 and 9 show, respectively, the variation of the critical axial
compression parameter P*(k = co) as a function of the stiffness ratio Erj ET as well as the
number of layers of a laminated open cylindrical panel with a symmetric and an anti­
symmetric cross-ply lay-up. It is again observed that critical buckling loads increase with
increasing stiffness ratio, independent of the stacking sequence or the number of layers
employed. For homogeneous panels reinforced in the axial direction ([0"] stacking
sequence). buckling occurs with one axial and one circumferential half-wave. Upon employ­
ing, however, circumferentially reinforced layers ([0"/90'L and ([0°/90"hL stacking
sequences), corresponding panels buckle in a pattern having two or more axial half-waves.

CONCLUSIONS

This paper studied the buckling problem of simply supported cross-ply laminated
cylinders and cylindrical panels, under certain external loadings, on the basis of fully three­
dimensional considerations. In more detail, the buckling ofopen cylindrical panels subjected
to an axial compression was investigated, while complete hollow cylinders were assumed
to buckle under the combined action of an axial compression and a uniform external
pressure. In all cases considered, the pre-buckling state was assumed free of initial shear
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Fig. 9. Critical buckling load parameter. P*, as a function of the stiffness of an open cylindrical
panel under axial compression (k = 'x. h/R = 0.2. L./R = 2, c/J = rr./3, antisymmetric lay-up).
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stresses. In the case of complete cylinders, this assumption resulted in an axisymmetric pre­
buckling state. Both the pre-buckling and the linearized buckling governing differential
equations were solved on the basis of a recursive approach. This is equivalent to the
successive approximation method employed recently in connection with exact three-dimen­
sional dynamic analysis of homogeneous and laminated composite cylinders and panels
(Soldatos and Hadjigeorgiou, 1990; Soldatos, 1991 ; Soldatos and Hawkes. 1991 ; Hawkes
and Soldatos, 1992). It presents, however, a considerable advantage: buckling load pre­
dictions are always obtained as eigenvalues of a 6 x 6 matrix, independently of the number
of successive approximations required.

In the particular case of a forty-layered complete cylinder under axial compression,
buckling load predictions based on the present method were found to be in excellent
agreement with corresponding results based on a three-dimensional finite element for­
mulation (Noor and Peters, 1989). It was concluded. however. that using a very large
number of degrees of freedom and, therefore, matrices of large dimension, the finite element
analysis employed by Noor and Peters (1989) should be computationally considerably
more expensive compared with the present approach that requires algebraic manipulations
involving 6 x 6 matrices only.

After the successful comparisons made, further results were shown and discussed for
cases that have not as yet been considered in the literature on the basis of full three­
dimensional considerations. These dealt with buckling of cylinders and cylindrical panels
having a symmetric or an antisymmetric cross-ply lay-up. Their trends were generally
agreed and further validated similar trends of numerical results based on corresponding
two-dimensional studies. However, these results are expected to be more accurate than
corresponding buckling results based on such two-dimensional investigations. Jn this
respect, the three-dimensional buckling analysis proposed in this paper can be further used
for the assessment of classical and, mainly, refined shell theories as far as buckling analyses
are concerned.
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APPENDIX

The elements of the matrices [g] and {X} appearing in eqn (4) are given as follows,

gel = R'(C"CJ1--CiJ+C'3C33)/CJJ, g22 = R- I(C2J -C3J )/C3J ,

XI =-(C ll A" +C2J BO)/Clh

(AI)

The nonzero elements of the matrix [G] appearing in eqn (14) are as follows,

G22 = -(C,,/R-O'~!R-dG~;dz)/(Cj5-G~),

G66 = - (C3J /R- 0''' IR - dO''' ;dz)/(Cn - 0'''), GO) = (C" + C.(,)a[3/(Css _ 0'0),

G" = -(C12 +C,,)R la/(C5S-O'~)' G'6 = -(CI3+C;S)a/(C55-O'~),

G41 = (C 12 + C,,,)a/i/(C44 -O'~),

G4J = [(C66 -O'~)a2+(C" -O';'){3' +(C'.4 -O';')R-'J/(C44 -O'~),

G6l = -(C,,+C44-2O';'){3R-I/(CJJ-O'D), G64 =(C21+C44){3/(Cn-O'~).

Gos = [(C" - O'~)a' + (C44 - O':')!i' +(C" -O';')R -'J/(C13 -O'~), (A2)

where a = mn/L, and {3 = ImiL,.
The non-zero elements of the constant matrix [Till] appearing in eqn (18) are given as follows (j = 2, 3,. ", N):

(A3)

where R is the radius of the interface between the (j-I)th and the jth layer and the CV.i, (m,11 = 1,2, .. 6) are
material constants of the jth layer (j = 2,3, ... N).


